参考文献
基于反绎学习和基因知识库的基因表达预测的参考文献一览
[1] Zhou Z. H., (2019), Abductive learning: Towards bridging machine learning and logical reasoning, Science China Information Sciences.
[2] Zhou Z. H., Huang, Y. X., (2022), Abductive learning, In P. Hitzler and M. K. Sarker eds., Neuro-Symbolic Artificial Intelligence: The State of the Art.
[3] The Gene Ontology Consortium, (2008), The Gene Ontology project in 2008, Nucleic Acids Research, 36.
[4] Christophe D., Nives S., et al., (2017), The Gene Ontology Handbook. Methods in Molecular Biology, Vol. 1446.
[5] Kanehisa M., Goto S., (2000), KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res., 28 (1), 27–30.
[6] Al taweraqi N., King R. D., (2022), Improved prediction of gene expression through integrating cell signalling models with machine learning, BMC Bioinformatics.
[7] Chen Y., Li Y., Narayan R., Subramanian A., Xie X., (2016), Gene expression inference with deep learning, Bioinformatics, 32(12), 1832–1839.
[8] Beer M. A., Tavazoie S., (2004), Predicting Gene Expression from Sequence, Cell, Vol. 117, 185–198, April 16.
[9] Singh R., Lanchantin J., Robins G., Qi Y., (2016), DeepChrome: deep-learning for predicting gene expression from histone modifications, Bioinformatics, 32, i639–i648.
[10] Edgar R., Domrachev M., Lash A. E., (2002), Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Res., 30 (1): 207–10.
[11] Chen J., Hu P., Jimenez-Ruiz E., et al., (2021), OWL2Vec*: embedding of OWL ontologies, Mach Learn.
[12] Huang Y. X., Hu W. C., Gao E. H., Jiang Y., (2024), ABLkit: A Python Toolkit for Abductive Learning, Frontiers of Computer Science.
[13] Reimers N., Iryna Gurevych, (2019), Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
[14] Huang Y., et al., (2023), Enabling Abductive Learning to Exploit Knowledge Graph, Proceedings of the 32nd International Joint Conference on Artificial Intelligence, 2023.
[15]: Zhang J., Li F., et al., (2024), Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production, Chem. Soc. Rev., 53, 1375-1446.
[16] Ai L., Muggleton S., (2024), Boolean Matrix Logic Programming, ArXiv, abs/2408.10369.
[17] Ai L., Muggleton S., Liang S., Baldwin G.S., (2024). Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models. ArXiv, abs/2405.06724.
[18] Shen V.R.L., Chang Y., Juang T., (2010), Supervised and Unsupervised Learning by Using Petri Nets, IEEE Transactions on Systems, Man, and Cybernetics, 40, 363-375.
[19] Knoar A., (2005), Machine Learning Using Fuzzy Petri Nets. In: Computational Intelligence. Springer, Berlin, Heidelberg.
[20] Sakama C., Inoue K., Sato T., (2021), Logic programming in tensor spaces, Annals of Mathematics and Artificial Intelligence, 89, 1133–1153.
[21] Andrew W. Senior, et al., (2020), Improved protein structure prediction using potentials from deep learning, Nature,577, 706–710.
[22] 周志华, 机器学习, 清华大学出版社, 2016.
Last updated